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A B S T R A C T

Pyrometamorphic rocks produced by natural coal combustion appear at archaeological sites across North
America but have received little archaeological attention regarding provenance studies. Tertiary Hills Clinker is
a distinct pyrometamorphic rock from Subarctic Canada utilized by hunter-gatherers from 10,000 years ago to
European contact. We employ X-ray diffraction, thin section analyses, and electron probe microanalyses to
characterise Tertiary Hills Clinker and inform archaeometric studies of rock produced by combustion meta-
morphism. We geochemically compare pyrometamorphic rocks used by pre-contact people across North America
to demonstrate that Tertiary Hills Clinker can be sourced using portable X-ray fluorescence. Results indicate that
Late Pleistocene/Early Holocene exchange networks in North America were larger than previously thought. A
later change in the distribution of Tertiary Hills Clinker may relate to a Late Holocene volcanic eruption (White
River Ash east) that fragmented modes of lithic exchange and associated social networks with potential stimulus
for a subsequent large-scale migration of northern hunter-gatherers across the continent. Provenance studies of
pyrometamorphic artifacts offer untapped opportunities to study social networks in coal-bearing regions across
the world.

1. Introduction

Pyrometamorphism (also called combustion metamorphism) gen-
erally occurs when coal, oil, or gas burn with sufficient energy to bake
or fuse neighbouring rock (Allen, 1874; Bentor et al., 1981; Cosca et al.,
1989; Grapes, 2011:21; Stracher et al., 2010). Beds of fused rock were
targeted for stone tool production because of the raw materials' internal
uniformity (Cinq-Mars, 1973; Clark, 1986; Curran et al., 2001;
Fredlund, 1976). Pyrometamorphic rock has received geological at-
tention in North and South America (Hefern and Coates, 2004; Henao
et al., 2010), Europe (Žáček et al., 2015), Russia (Sokol et al., 1998),
China (Song and Kuenzer, 2017), and Africa (Pone et al., 2017). Despite

the global distribution of rock produced by coal combustion and the use
of it by people, comparatively few efforts have been made by archae-
ologists to formally identify pyrometamorphic rock in archaeological
assemblages (Estes et al., 2010; Hughes and Peterson, 2009; Le Blanc,
1997; Vapnik et al., 2015).

We use X-ray diffraction (XRD), thin sections, and electron probe
microanalyses (EPMA) to characterise and identify a distinct pyr-
ometamorphic rock called Tertiary Hills Clinker (THC) that was dis-
tributed over 1.25million km2 and utilized for over ten millennia in
North America (Andrews, et al., 2012; Cinq-Mars, 1973). We geo-
chemically compare pyrometamorphic rocks used by pre-contact people
across the continent with portable X-ray fluorescence (pXRF) to verify
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provenance of THC and infer hunter-gatherer exchange networks from
the Late Pleistocene to European contact. A volcanic eruption dated at
846–848 CE called the White River Ash east event (Jensen et al., 2014;
Lerbekmo, 2008) may have severed social relationships between people
in two major river basins in North America: the Mackenzie River that
flows north to the Arctic Ocean and the Yukon River that flows north
and west to the Pacific Ocean (Gordon, 2012; Workman, 1979). This
may have provided the initial stimulus of one of the largest pre-contact
migrations of people (Athapaskan) in the New World (Haskell, 1987;
Ives, 2003, 2010, 2014; Magne and Matson, 2010; Moodie et al., 1992;
Seymour, 2012).

2. Pyrometamorphism and North American clinkers

Pyrometamorphism by coal combustion typically occurs near geo-
logical fracturing that exposes flammable strata to oxygen (Cosca et al.,
1989). Natural fires spread horizontally along exposed coal seams and
can burn underground for over 100m. Pyrometamorphism products
range from thermally altered but unmelted rocks (dubbed burnt or
baked rocks), partially fused rocks (termed clinker), or totally melted
rocks (called paralava or slag) (Grapes, 2011). Porcellanite is a specific
type of clinker formed from shale or siltstone that is heated near the
point of melting; the rock recrystallizes (sinters) and takes on a ceramic
or porcelain texture (Hefern and Coates, 2004). The term porcellanite
has been used in other geological contexts, e.g., formation as a siliceous
duricrust (McNally et al., 2000), but in North America it is generally
limited to pyrometamorphic origins with major outcrops on the
Northern Plains of the US (Fig. 1). Flaked porcellanite artifacts dom-
inate some Holocene assemblages in Montana and Wyoming (Clark,
1985; Fredlund, 1976). A related pyrometamorphic rock called non-

volcanic natural glass (NVNG) was also used in pre-contact times on the
US Northern Plains (Frison, 1974; Hughes, 2007a). In addition to coal
sources, clinkers can also form from combustion of carbonaceous se-
diment like Cape Bathurst Clinker (CBC) (Mathews and Bustin, 1984)
that outcrops in the Canadian Arctic (Fig. 1). CBC was used for several
thousand years by coastal hunter-gatherers (Le Blanc, 1991). Hefern
and Coates (2004) note that clinkers vary due to: 1) grain size and
mineralogy of parent rock; 2) degree of heat alteration; and 3) degree of
oxidation or reduction during and after heating. Different thermal re-
gimes can create a diverse array of clinkers within a single outcrop.

Outcrops of THC are 30 km west of the second largest fluvial system
in North America – the Mackenzie River of Canada's Northwest
Territories (Fig. 1). Subarctic hunter-gatherers quarried THC from ap-
proximately 10,000 years before present to European contact (Andrews
et al., 2012; Hanks and Pokotylo, 2000). Specifically, THC has been
reported in association with a Late Pleistocene fluted point in Alberta
(Bereziuk, 2016), middle Holocene microblades in Yukon and North-
west Territories (Andrews, 1999; Clark, 1986; Le Blanc, 1997), and Late
Holocene copper in Yukon (Thomas, 2003) (Fig. 2). Like other clinkers
used by hunter-gatherers in North America, little archaeological re-
search has been published about identification, provenance, and overall
significance of THC. In this study, we present summaries of XRD, thin
section investigations, and EMPA to support the pyrometamorphic
origin of THC prior to discussion in the remainder of the paper of our
pXRF provenance results and their implications for detecting human
responses to a Late Holocene volcanic eruption.

3. Identification of Tertiary Hills clinker

Vitreous rocks produced by coal combustion are particularly easy to

Fig. 1. Outcrops of recorded vitreous clinkers in Canada and northern United States discussed in text (bedrock geology data from USGS, 2014).
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overlook or misidentify in knapped stone tool assemblages because of
superficial similarities to non-pyrometamorphic materials such as chert,
quartzite, quartz, obsidian, or chalcedony (Hughes, 2007b; Hughes and
Peterson, 2009; Kristensen et al., 2016). Tertiary Hills Clinker (THC)
was variously called Keele River Obsidian (MacNeish, 1954:248), ig-
nimbrite (a welded pyroclastic flow) (Millar, 1968), Tertiary Hills
Welded Tuff (presumed by Cinq-Mars (1973) to be a volcanic ash
welded by subsurface contact with magma domes), and Tertiary Hills
Tuffaceous Clinker (ash fused by naturally ignited coal seams)
(Pokotylo and Hanks, 1989). Systematic analyses to support the iden-
tification of THC have not been published and uncertainty persists
concerning its parent materials and formation processes. Additionally, a
lack of archaeological knowledge of THC, and clinkers in general, has
limited reconstructions of their significance in North America.

THC is white, grey, brown, or purple (Kristensen et al., 2016) and
varies from translucent to opaque with vitreous to glimmering lustre
(Ives and Hardie, 1983). Cobbles display variable degrees of fusion,
often with cracks and cortices reddened by oxidation, which is com-
parable to other North American vitrified clinkers (Fig. 3). Artifacts
made from THC are typically a uniform white variety that has been
informally described as glassy with a powdered sugar texture. A general
diagnostic trait of clinkers is a high density of polydisperse circular

vesicles (from<10 μm up to 2mm in diameter) produced by gas
trapped during combustion (Table 1 and Fig. 4). THC fractures in a
similar fashion to obsidian and was presumably highly sought after
because of its unique appearance, hardness, and excellent workability
(Hanks, 1993).

3.1. XRD materials, methods, and results

X-ray diffraction (XRD) is used to identify crystalline material based
on the pattern produced by the elastic scattering of monochromatic
radiation by the crystal structure of the material (Calvo Del Castillo and
Strivay, 2012). Identifications are made by comparison of the experi-
mental pattern to a database of diffraction patterns of known materials.
Three samples of THC (two artifacts from Alberta and one natural
outcrop piece) were ground to fine powders with an agate mortar and
pestle, and XRD patterns acquired using Bragg-Brentano parafocussing
reflection geometry with a Rigaku Ultima IV θ-θ diffractometer. This
instrument has a Co X-ray source (Kα 1.78899 Å) and Fe filter and was
operated at 38 kV and 38mA. The detector was a 1D silicon strip (D/tex
Ultra). Each diffraction scan was run from 5 to 90° 2θ in continuous
mode with a step size of 0.02° 2θ, and a count time of 0.6 s per step.

XRD results indicate that THC is heavily dominated by non-

Fig. 2. Tertiary Hills Clinker artifacts. Specimen 1: HjPd-1:924, from northern Alberta (Royal Alberta Museum); Specimen 2: No catalogue number, from north
central Alberta (Athabasca Archives); Specimen 3: MaRe-11:1, from western Northwest Territories (Prince of Wales Northern Heritage Centre); Specimen 4: 2004.7,
from northwest Alberta (Grande Prairie Pioneer Museum); Specimens 5–12: KaVa-3:25–28, 56–57, 91, 102 (Yukon Heritage Branch).
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crystalline amorphous material with minute amounts of cristobalite,
quartz, and mullite (a needle-shaped aluminosilicate mineral char-
acteristic of high-temperature non-volcanic conditions) (see Cosca
et al., 1989, and Clark and Peacor, 1992 for comparative mullite de-
tection in pyrometamorphic rock). The presence of amorphous material
(glass) explains why THC was used as a toolstone: it fractures con-
choidally with sharp edges. XRD results support tentative identifica-
tions of several minerals that may have existed in the parent sedi-
mentary rock (e.g., muscovite, dolomite) or were produced as a result of
pyrometamorphism (e.g., olivine) or weathering (e.g., rozenite). The
XRD results support an origin of THC via fusion of sedimentary rock

from the combustion of coal seams.

3.2. Thin section materials, methods, and results

Samples of THC, porcellanite (found mostly in the Powder River
Basin of Montana and Wyoming), and NVNG (also found across
southeast Montana and northeast Wyoming) were cut, ground, and
polished for thin section viewing. The behaviour under cross-polarized
light indicates that THC, like NVNG and porcellanites, is composed
primarily of isotropic material, interpreted to be amorphous (glass)
(Fig. 5). THC lacks any remnants of internal bedding, which are often
visible in NVNGs, and has generally undergone more thorough fusion
and vitrification than porcellanites. NVNG vesicles tend to be more
elongate than THC, which suggests that NVNG experienced minor flow
during formation whereas THC did not appear to undergo lateral
movement. Porcellanite is more uniformly opaque indicative of less
intense thermal alteration during formation (Fredlund, 1976). The thin
section results support the formation of THC in close proximity to an
underlying coal bed as opposed to the more mobile chimney structure
(i.e., gas vent) associated with the formation of NVNG (dubbed a glassy
paralava by Cosca et al., 1989). Microscope images (Fig. 6) help

Fig. 3. Unmodified clinker cobbles. Top left quarter: Tertiary Hills Clinker, from top left clockwise: LcRq-7:45, LdRr-1:3, LcRq-7:38; and uncatalogued specimen
likely from LdRq-3, Prince of Wales Northern Heritage Centre, Yellowknife, Northwest Territories. Top right quarter: Non-volcanic natural glass from southeast
Montana, specimens uncatalogued, courtesy of Craig Lee. Bottom right quarter: Flat Top Mountain Clinker, specimens uncatalogued, Archaeological Survey of
Alberta, Edmonton, Alberta. Bottom left quarter: porcellanite from southeast Montana, specimens uncatalogued, images courtesy of Jim Miller, Patrick Rennie, and
James Keffer.

Table 1
Proportions (%) of vesicles and inclusions in Tertiary Hills Clinker samples from
back-scattered electron images determined with ImageJ.

Sample KfTd-3 GbPt-11 HhoU-113

Vesicles (void space) 1.9 2.6 2.7
Dark (in BSE) inclusions 2.3 12.8 3.8
Bright (in BSE) inclusions 0.1 0.2 0.2
Matrix glass 95.7 84.4 93.3
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illustrate different thermal regimes and the influence of different parent
materials in the formation of North American clinkers. Porcellanite,
THC, and NVNG derive from coal combustion of fine-grained sedi-
mentary rock while CBC is a more heterogeneous material formed from
combustion of carbonaceous sediment.

3.3. EPMA materials, methods, and results

An electron probe microanalyzer (EPMA, or electron microprobe)
uses a high-voltage focussed electron beam to generate characteristic X-
rays in a polished sample. The intensity of these X-rays is measured
with wavelength dispersive spectrometers and converted to elemental
abundances with respect to standard materials after correction for
matrix effects (Potts, 1987). The electron beam can be focussed to<
1 μm, which permits separate examination of matrix material vs. in-
clusions. Fig. 4 depicts back-scattered electron images (BSE) acquired
with a JEOL 8900R electron microprobe in beam-scan mode with a
focussed electron beam operated at 20 kV and 10 nA beam current. The
back-scattered-electron signal is proportional to the mean atomic
number of the material analysed: materials with more heavy elements
will therefore appear brighter in such images (Lloyd, 1987). Analysis of
the BSE images using the program ImageJ (Schneider et al., 2012)
yields the area (volume) percentages of vesicles, dark- and bright-in-
clusions, with respect to the glass matrices (Table 1).

A total of 88 points in the glassy matrices and 22 inclusions were
selected for more detailed examination from three round samples of
THC fragments. A JEOL 8900R electron microprobe operated at 20 kV
and 10 nA with a beam diameter of 10 μm was used for analysis of the

glass matrices (Table 2). Count times for wavelength-dispersive spec-
trometry were 30 s on peaks and 15 s on backgrounds for the Kα lines
of: Si, Ti, Al, Cr, Fe, Mn, Mg and K, whereas conditions of 40 s on peak
and 20 s on backgrounds were used for Na Kα.

Following Grapes (2011), liquidus temperatures (the temperature at
which the material would have been completely molten) were calcu-
lated for the average anhydrous glass compositions at 1 bar (1 atm)
pressure using the Excel spreadsheet rhyolite-MELTS v1.0 (Gualda and
Ghiorso, 2015). The glass compositions are reminiscent of high-K
rhyolites (Table 2). The solid inclusions in the glasses were identified as
sekaninaite (the iron analog of cordierite, Grapes et al., 2011), meta-
kaolin (Sperinck et al., 2011), feldspar, and silica.

Clinker melting temperatures range in general from 400 °C to
1600 °C (Grapes, 2011); the presence of metakaolin and sekaninaite in
THC, along with the calculated liquidus temperatures of glasses, suggest
melting between 800 and 1130 °C. Studies of coal reflectance in the
Tertiary Hills (Sweet et al., 1989) produced Ro random values of 0.39 to
0.59 indicating ranks ranging from lignite to high volatile-C bituminous
coal, which would be capable of high temperature combustion.

This assemblage of phases, in conjunction with the high calculated
liquidus temperatures of the glasses, is consistent with a pyr-
ometamorphic origin for THC (Grapes, 2011), as opposed to an igneous
origin as a tuffaceous rock. Therefore, THC most likely formed through
the combustion of coal and resultant pyrometamorphism of sur-
rounding shale or mudstone parent materials.

Fig. 4. Back-scattered electron images of THC. Vesicles are shown as black. Inclusions are either darker or lighter in grayscale than the medium grey glass matrix. Top
left: KfTd-3; top right: GbPt-11 area 1; bottom left: GbPt-11 area 2; bottom right HhOu-113.

T.J. Kristensen et al. Journal of Archaeological Science: Reports 23 (2019) 773–790

777



4. Geological origins and formation processes

We here combine XRD, thin section, and EPMA results with field
studies to infer geological origins and formation processes of THC,
which have archaeological implications both in terms of pre-contact
hunter-gatherer exploitation of localized outcrops and the ability to
perform provenance studies on clinkers. THC outcrops in the Summit
Creek Formation (Fig. 7): a roughly 3000 km2 Late Maastrichtian (Late
Cretaceous) to Paleocene (roughly 66 to 53mya) succession of con-
glomerate, sandstone, ash beds, carbonaceous shale, and low grade
coals (Fallas et al., 2013; Sweet et al., 1989; Yorath and Cook, 1981).
The Summit Creek Formation formed as an alluvial fan that was sub-
sequently uplifted, folded, and faulted during several phases of the
Laramide Orogeny (Sweet et al., 1989; Yorath and Cook, 1981). Sec-
tions of the Summit Creek Formation contain small lens-like bodies
(< 20 cm thick) of THC surrounded by baked, red siliceous mudstone
(Fig. 8) (Hanks, 1993; Yorath and Cook, 1981). XRD, EPMA, and thin
section results (e.g., spherical vesicles) are consistent with field

evidence that the parent material of THC is clay or mudstone shale.
Neither stratigraphy nor laboratory analyses suggest any evidence of
formation of THC from contact with volcanic ash or magma (as sug-
gested by Cinq-Mars, 1973; Millar, 1968; and Pokotylo and Hanks,
1989).

Coal and bituminous sediments associated with clinkers are typi-
cally exposed by stream cutting or glacial activity (Grapes, 2011). The
Tertiary Hills experienced numerous cycles of glaciation and scour
(Duk-Rodkin et al., 1996) that may have also exposed coal beds to some
form of ignition (e.g., forest fires). While clinkers in Montana and
Wyoming formed 4mya (Hefern and Coates, 2004), the metastable
nature of the THC minerals detected by EPMA suggests formation in the
last 12,000 years. During in situ coal burning, active smoke vents would
be visible and a likely source of curiosity to Holocene tool makers.
Smoking vents (bocannes) are thought to have similarly attracted pre-
contact people to Cape Bathurst Clinker outcrops (Le Blanc, 1991). The
Shuhtagot'ine Dene First Nations, whose traditional territory en-
compasses the Tertiary Hills, are well aware of modern active coal
burns and interpret them to be remnants of burning fat that dripped
down from a giant beaver killed by culture hero Yamǫ́ria (Blondin,
1990).

Archaeometric and field studies suggest that THC is a more localized
and uniform material compared to widely distributed and variable
outcrops of porcellanite and NVNG (Fig. 1). These latter materials form
in complex chimney and bed structures across the US Northern Plains
(Cosca et al., 1989; Hefern and Coates, 2004) with a predictably
broader variety of parent materials and combustion dynamics. Spatial
confinement of THC outcrops to a comparatively small area, and the
likelihood of greater geochemical consistency compared to US clinkers,
make THC a candidate for provenance studies.

5. Sourcing

5.1. PXRF materials and methods

PXRF analyses were conducted to determine if different clinkers
have distinct geochemical signatures that could lend reliable quanti-
tative support to connections drawn between clinker artifacts and
outcrops. XRF can provide a geochemical summary of the elements
present within individual specimens and their respective concentra-
tions. When employed on silica-rich rocks like clinkers, pXRF is parti-
cularly effective at detecting and quantifying concentrations of the
elements Mn, Fe, Zn, Ga, Rb, Sr, Y, Zr, Nb, and Th (Glascock et al.,
1998; Speakman et al., 2011).

THC artifacts from Northwest Territories (n=45), Alberta
(n=10), and Yukon (n= 10), and 35 raw outcrop samples from the
Tertiary Hills were analysed along with samples of Montana porcella-
nites (n=10), CBC (n=7), and Montana NVNG (n=10). Twelve
samples of clinker from Flat Top Mountain in north central Alberta
(FTMC) were also included for comparative geochemistry although
there is currently no evidence that it was quarried in pre-contact times.
In addition, samples of quartzite, quartz, chalcedony, and other mate-
rials that may superficially resemble clinkers (n=20 in total) were
analysed to assess whether or not they can be differentiated by pXRF.

XRF analyses were completed using a Bruker AXS Tracer III-SD
handheld spectrometer attached to a laptop computer running Bruker
software S1PXRF. The Bruker AXS Tracer III-SD instrument is equipped
with a Rh X-ray tube and a 10mm2 Silicon Drift Detector (SDD) with a
resolution of 145 eV FWHM for 5.9 keV X-rays. To optimize determi-
nation of elements of interest, a Bruker AXS excitation filter (comprised
of 0.1523mm Cu, 0.0254mm Ti, and 0.3047mm Al) was used. Data
were collected for 300 s live-time count periods with the device set at
40 kV and 30 μA. Manganese, Fe, Zn, Ga, Rb, Sr, Y, Zr, and Nb were
quantified via their Kα X-ray emissions, while Th was determined using
its Lα X-rays. The proprietary obsidian calibration supplied by Bruker
AXS was employed for THC elemental analyses. Speakman et al. (2011)

Fig. 5. Thin sections of THC (top), NVNG (middle), and porcellanite (bottom).
At right are images of each thin section flake under normal light (top) and cross-
polarized light (bottom).

T.J. Kristensen et al. Journal of Archaeological Science: Reports 23 (2019) 773–790

778



found the obsidian calibration gave relatively accurate results for the
analysis of ceramic data, which they considered reasonable because
obsidian and pottery are silica-rich materials. Given the expected ele-
mental similarity between THC and obsidian, we deemed it reasonable
to use the obsidian calibration in this study. Furthermore, pXRF ana-
lysis of a powdered sample of NIST 278 (obsidian), NIST 2710a (soil),
and the USGS rock reference materials RGM-2 (rhyolite), QLO-1 (quartz

latite), and GSP-2 (granodiorite), for quality assurance purposes, gave
results for the elements listed above in good agreement with their
certified or recommended values.

5.2. PXRF results

The analysed clinkers were determined to have distinct but variable
elemental signatures (Table 3 and Appendix A), which is predictable
given that different thermal regimes create a wide variety of pyr-
ometamorphic rocks within a single outcrop (Grapes, 2011:30). High
levels of iron and sulphur (not quantified in this study) are likely due to
the presence of pyrite (FeS2) from coal combustion; Sweet et al. (1989)
found that the average sulphur content of coal in the Summit Creek
Formation was 0.6%. We found that clinkers in general contain levels of
Zr, Rb, Sr, and Y, and other trace elements commonly associated with
coal-baked origins (although comparable concentrations can occur in
volcanic materials). The relatively high Rb concentration also points to
an original shale or mudstone (argillaceous) precursor of THC. As in
obsidian-sourcing studies, trace element comparisons including Rb, Sr,
Zr, Ga, Y, Th, and Mn are useful for differentiating THC from similar-
looking materials, as well as other clinkers (Figs. 9–10 and Table 3).

The majority of THC artifacts from Northwest Territories and Yukon
fall within 95% confidence ellipses of several element bivariate plots of
THC outcrop material (Figs. 9-10). NVNG and porcellanite from

Fig. 6. Microscope images and magnification; THC (top left), Montana porcellanites (top right), CBC (bottom right), and Montana NVNG (bottom left). Porcellanite
provided by Jason Roe, NVNG provided by Craig Lee.

Table 2
EPMA average analyses of the glass matrices of three THC samples. Cr was
sought but not found above the limit of detection. Mean weight-percent com-
positions are listed with standard deviations in brackets.

Sample KfTd-3 GbPt-11 HhOu-113

# of points 28 31 29
SiO2 78.22 (0.19) 76.98 (0.85) 77.85 (0.32)
TiO2 0.06 (0.02) 0.07 (0.01) 0.06 (0.01)
Al2O3 12.77 (0.10) 13.16 (0.45) 12.62 (0.09)
FeOtotal 1.03 (0.04) 1.25 (0.10) 0.94 (0.08)
MnO 0.05 (0.01) 0.04 (0.01) 0.05 (0.01)
MgO 0.04 (0.01) 0.09 (0.02) 0.03 (0.02)
CaO 0.53 (0.02) 0.89 (0.10) 0.48 (0.02)
Na2O 0.46 (0.03) 1.62 (0.08) 0.45 (0.04)
K2O 6.56 (0.12) 5.09 (0.33) 6.63 (0.14)
Total 99.72 (0.19) 99.19 (0.34) 99.11 (0.32)
Liquidus °C (1 bar) 1126 1079 1128
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Montana and CBC from the Mackenzie Delta consistently plot outside
the geochemical variability of THC and can be distinguished by pXRF.
The relatively tight spatial clusters of CBC, porcellanites, NVNG, and
FTMC are supportive of future sourcing work with these clinkers. On a
broader level, pXRF offers rapid and non-destructive means to quickly
distinguish clinkers from similar-appearing materials such as quartzites
and chalcedonies.

A plot of Ga vs. Sr/Nb indicates that some Yukon, Alberta, and
Northwest Territories artifacts are beyond the 95% confidence ellipse of
THC outcrop material suggesting that the outcrop samples analysed in
this study may not capture the full variability of these elements and that
these elements may be of future utility to distinguish particular THC
outcrops. Purported THC artifacts in central Alberta (GbPt-11 and GfPt-
3) exhibit levels of Mn, Sr, and Ga outside the variability displayed by

Fig. 7. THC outcrops (top) in the Summit Creek Formation. An adapted schematic stratigraphy of bedrock including the Summit Creek Formation (from Fallas et al.,
2013).
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THC outcrop material and could indicate that this clinker was quarried
from a particular outcrop in the Tertiary Hills that was not captured in
this study. Variability in the detected elements is to be expected con-
sidering the variability in source rock over the distribution of THC.
Lastly, Fe should be interpreted with caution: it is suspected that two
THC outcrop samples yielded abnormally high Fe levels due to the
presence of cortex within areas of the samples analysed by pXRF. The
cortex covering THC tends to consist largely of iron oxides. Results of
the pXRF analysis indicate that clinker artifacts across Subarctic North
America can be reliably differentiated from one another, and can be
sourced to THC outcrops in Northwest Territories.

6. Archaeological significance

6.1. Distribution

THC artifacts were transported 600 km both east and west of
Tertiary Hills, 530 km to the north, and 1200 km south of their outcrops
with a total area that encompasses roughly 1.25million km2 (Figs. 11
and 12). In comparison, we estimate that Edziza obsidian artifacts from
northern British Columbia extend 1.5 million km2 into Yukon and
northern Alberta (Potter et al., 2017; Woywitka, 2017) while Knife
River Flint from North Dakota extends 3.7million km2 across the
Northern Plains into Alberta (Ahler, 1986:105; Kristensen et al., 2018).
A particularly wide distribution across irregular and forested terrain
(not known for ease of human movement) likely relates to THC's
proximity to the second largest river network in North America.

6.2. Frequency

THC is comparatively rare but when it does occur, it is often a
significant portion of site assemblages (Table 4). Roughly one quarter of
all THC-bearing sites in Northwest Territories contain a THC tool (THC
tools comprise roughly 6.5% of site assemblages with THC) but it most
commonly occurs as small bifacial reduction or tertiary flakes in-
dicating that THC generally moved in the form of curated tools. Tool to
debitage ratios do not differ significantly with distance from the source.
A similar pattern prevails in Alberta and Yukon where nine of the 28
sites with THC have assemblages in which the only THC artifact re-
covered is a curated tool. All THC debitage recovered beyond North-
west Territories is late stage debris. THC is relatively brittle and would
not be a suitable raw material for repetitive blunt force tasks like
chopping or early stage scraping of hides and this presumably limited
its utility to piercing and slicing; typical THC tools are projectile points,
knives, and microblades.

6.3. Chronology

Fourteen sites with THC artifacts have yielded radiocarbon dates
that span the Holocene (Table 5 and Fig. 13). Sites in Alberta (GdQn-1)
and Yukon (NcVi-3) produced THC flakes (see Appendix 1 for pXRF
results) and fluted points (Bereziuk, 2016; Clark and Clark, 1983;
Esdale, 2008; Le Blanc, 1997) while JcRw-3 in Northwest Territories
(Millar, 1968) produced a date from 10,124 to 9534 cal years BP
(Stuiver et al., 2018) although stratigraphic control is poor. HhOu-113

Fig. 8. THC outcrops are found in the Summit Creek Formation visible here as the upper reddened strata in this exposure, people at centre for scale (image courtesy of
David Pokotylo).

Fig. 9. Bivariate plot of element concentrations with 95% confidence ellipse
around THC outcrop material.
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is a single occupation site in Alberta (Roskowski, 2012) that yielded
THC flakes (see Appendix 1) and a date of 8150 to 7970 cal years BP
(Stuiver et al., 2018). THC occurrences at Late Pleistocene/Early Ho-
locene sites suggest a wide Subarctic social network during deglaciation
when continental ice sheets had not fully melted to the west and east. If
the Tertiary Hills deglaciated earlier than surroundings (Hanks, 1993),

they may have been connected to Alberta and Yukon through a na-
vigable corridor as early as 12,000 cal years BP (Dawe and Kornfeld,
2017). Fluted KRF points have been found in Alberta (Kristensen et al.,
2018) at a similar latitude to the fluted point and THC site at GdQn-1:
fluted point makers in Alberta appear to have maintained contact from
North Dakota to Northwest Territories (a linear distance of 2500 km

Fig. 10. Bivariate plots of element concentrations with 95% confidence ellipses around THC outcrop material (cherts, quartzites, quartzes, and chalcedonies were
excluded).

Table 3
Average element concentrations in parts per million (i.e., μg/g) (standard deviation in brackets) as measured by pXRF (n= number of samples of each group
analysed).

Sample (n) Mn Fe Zn Ga Th Rb Sr Y Zr Nb

Tertiary Hills Clinker 35 380
(40)

11,000 (6100) 106
(70)

21
(4)

17
(1)

280
(63)

25
(6)

27
(5)

125
(16)

12
(2)

Flat Top Mountain Clinker 12 340
(20)

10,600
(700)

79
(17)

16
(1)

19
(1)

188
(14)

77
(10)

35
(1)

193
(8)

14
(1)

Cape Bathurst Clinker 7 780
(290)

32,100
(35200)

355
(424)

39
(12)

20
(6)

149
(18)

161
(123)

39
(6)

174
(8)

20
(5)

Natural Non-Volcanic Glass 10 450
(80)

12,900
(1300)

96
(18)

36
(7)

33
(5)

198
(11)

19
(4)

69
(4)

216
(11)

57
(3)

Porcellanite 10 660
(240)

36,200
(9100)

118
(38)

31
(6)

16
(5)

147
(21)

112
(19)

32
(3)

160
(24)

18
(4)
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equivalent to that between southern Greece and northern Denmark).
The geographic connection highlighted by THC movement through the
Middle to Late Holocene demonstrates conduits of exchange that, with
future identification and provenance analyses of THC, can inform
models of how communal hunting, the bow and arrow, linguistic
groups, and DNA families spread across interior North America.

6.3.1. White River Ash east and volcanic eruptions
The majority of archaeological sites containing THC lack datable

material due to taphonomic processes but many contain a well-defined

stratigraphic marker that can be used for relative dating of occupations.
The White River Ash east (WRAe) eruption dated to 846–848 CE
(Jensen et al., 2014) created an ash lobe that extended across Yukon
into Northwest Territories over 600 km east from its origin at or near
Alaska's Mount Churchill (Fig. 14). An estimated 47 km3 of ash des-
cended across roughly 1million km2 making this one of the largest
Holocene eruptions in North America (Lerbekmo, 2008; VanderHoek
and Nelson, 2007). Permit reports, site forms, and publications were
analysed for all available THC-bearing sites to assign pre- vs. post-
WRAe ages (Table 6) based on the presence of ash and typological in-
formation (e.g., projectile points and microblades).

A comparison of pre- vs. post-WRAe assemblages indicates that the
eruption altered hunter-gatherer mobility and exchange patterns. When
pre- vs. post-WRAe chronologies could be assigned to Yukon and
Alberta assemblages with THC, all sites are pre-WRAe despite the fact
that a relatively high percentage of pre-contact sites in Subarctic
Canada are from the last 1000 years (e.g., due to visibility, connections
to oral history, and erosion factors). It appears that long-distance re-
lationships with people of Northwest Territories broke down after the
eruption based on the absence of post-WRAe THC in Yukon and Alberta.

Changes in THC movement before and after WRAe suggest that the
eruption weakened contact and material exchange across the

Fig. 11. All confirmed occurrences of pre-contact sites (n=160) with THC artifacts in Yukon, Northwest Territories, and Alberta. More sites likely exist but THC was
not mentioned in site records or collections were inaccessible.

Fig. 12. Distance drop-off chart. The x-axis consists of archaeological sites, each
represented by one bar.
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Mackenzie Mountains that separate Yukon and Northwest Territories.
While landscapes and biota may have been minimally affected by ash in
the Mackenzie Basin (MacDonald, 1987; Slater, 1985; Szeicz et al.,
1995), human adaptations in the Yukon River Basin, particularly re-
gions with over 5 cm of ash deposition, were likely heavily stressed
(e.g., Anderson et al., 2005; Bunbury and Gajewski, 2013; Gajewski
et al., 2014; Kuhn et al., 2010). In general, volcanic eruptions in the
arctic/subarctic with significant ash deposition (5 cm or greater) ex-
perienced more dramatic impacts on ecosystems and people than in
temperate environments because of relatively simpler trophic pyramids
and more fragile landscapes (Dumond, 2004; Fitzhugh, 2012; Grishin
et al., 1996; Jacoby et al., 1999; Pendea et al., 2016; Sheets, 2012;
VanderHoek and Nelson, 2007). Oral history indicates that in the last
500 years, people maintained regular contact and kin networks across
the Mackenzie Mountains (Gillespie, 1981; Hanks, 1993; Michea,
1963); with a lack of access to Yukon River resources and social net-
works caused by ash and ecological stress, people of the Mackenzie
Basin may have shifted to a more insular economy and endogamous kin
network (Ives, 1990). This may explain a drop in the movement of
curated THC tools away from the source and an increase in domestic
production because the Tertiary Hills were more frequently visited
during seasonal rounds of Mackenzie Basin hunter-gatherers. A lack of
access to social networks to the west (towards Yukon), may have
weakened Northwest Territories hunter-gatherer economic systems
that, in turn, had once helped support long-distance exchange south to
Alberta. We argue that the WRAe eruption destabilized a social land-
scape that had previously fostered long-distance exchange.

Within Northwest Territories, sites with THC increase from roughly
one per 200 years (pre-WRAe) to one site per 50 years (post-WRAe).

Table 4
Comparison of assemblages with THC from Northwest Territories, Alberta, and Yukon. Sites with less than ten artifacts are excluded in the fourth row to remove a
skew caused by small lithic scatters.

Jurisdiction Northwest Territories Yukon Alberta Total

Number of sites with THC 132 12 16 160
Frequency of THC in assemblages with THC 33.3% 12.3% 12.8% 32.1%
Frequency of THC in assemblages with THC excluding sites with < 10 artifacts 16.6% 5.3% 5.4% 16.0%
Rough total of pre-contact sites in territory/province ~4000 ~4000 ~36,000 –
Percentage of pre-contact sites that contain THC in territory/province ~3% <1% <0.1% –
Average distance from source 235 km 585 km 1067 km 341 km

Fig. 13. Probability distribution of radiocarbon dated archaeological sites with
THC. Probability distributions based on calibrated 2σ range generated using
Calib 7.1 (Stuiver et al., 2018) and CORELdraw 6.0.

Table 5
Sites with THC recovered from radiocarbon dated components. CARD is the Canadian Archaeological Radiocarbon Database (Martindale et al., 2016).

Site Conventional RC date BP Lab number Material δ13C (per mil) Location Reference

JcRw-3 8720±190 4920±110
3780±160

GAK 1275
I-3190

GAK 1274

Charcoal
Carbonaceous soil

Charcoal

−25.0
Not known
−25.0

Northwest Territories Millar, 1968

HhOu-113 7220±40 Beta-33,309 Calcined bone −23.1 Alberta Roskowski, 2012
KaVa-3 5870±40 Beta-86,359 Charcoal −26.1 Yukon CARD
LgRk-2 4965±220

4065±220
S-5
S-8

Peat
Plant remains

−27.0
−27.0

Northwest Territories Clark, 1986

LgRk-1 4430±240
3890±180
4800±200
4650±200

RIDDL-322
RIDDL-323

S-10
S-9

Caribou bone collagen
Caribou bone collagen

Charcoal
plant remains

−20.0
−20.0
−25.0
−25.0

Northwest Territories CARD

KdVa-8 3630±140 AECV-1560C Charcoal Not known Yukon Thomas, 2003
JcRw-8 2460±160 GSC 844 Charcoal −25.0 Northwest Territories CARD
JlRq-1 2225±170

2265±385
S-691
S-703

Charcoal
Charcoal

−25.0
−25.0

Northwest Territories CARD

JePw-1 1860±135 1635±280 S-2873
S-2875

Charcoal
Charcoal

−25.0
−25.0

Northwest Territories Hanks and Irving, 1986

MiRh-5 1690±110 S-922 Calcined bone −20.0 Northwest Territories Clark, 1975, CARD
LhRe-1 1690±50 Beta-099129 Charred plant material −27.0 Northwest Territories Toews and Pickard, 1997
KlRk-1 1570±60 S-704 Charcoal −25.0 Northwest Territories CARD
KlRs-5 1285±205 1070±215 S-2873

S-2877
Charcoal
Charcoal

Not known
Not known

Northwest Territories Hanks, 1993

LcRq-3 335±80 I-7788 Charcoal −25.0 Northwest Territories Cinq-Mars, 1975
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The frequency of THC tools drops significantly from pre- to post-WRAe
while the relative percentage of THC in Northwest Territories assem-
blages significantly increases from pre- to post-WRAe (Table 6).
Overall, the movement of curated THC artifacts drops while domestic
production (increased percentages of debitage) increases after the
eruption. Spatial data also indicate that post-WRAe long distance
movement of THC drops (Fig. 15). However, several archaeological
sites in Northwest Territories with THC in both pre- and post-WRAe
components indicate a local continuity of exploitation (e.g., LgRk-1,
LcRq-3, and KlRs-5 on Fig. 15).

7. Discussion

Long-term exploitation of pyrometamorphic raw material outcrops
(Tertiary Hills Clinker) implies some degree of stability and continuity
in Subarctic hunter-gatherer adaptations in Northwest Territories.
Knowledge of THC outcrops was presumably passed down from gen-
eration to generation with high fidelity despite cultural and technolo-
gical changes over 10,000 years. Conversely, the visibility of burning
bocannes and vents may have been a continuous beacon for raw ma-
terial exploitation. The identification of THC and provenance results
support the assertion that for much of the Holocene, contact between
cultures has at least sporadically existed from Alberta to Yukon.

The Mackenzie River and its tributaries appear to have been con-
duits of contact and exchange, which supports historic records of the
river acting as a meeting ground of Dene people (Gillespie, 1981;
Michea, 1963). Fig. 16 is an overlay of Dene First Nation territories at

the time of European contact (Ives, 1990) superimposed on THC site
distribution and illustrates the significance of the Mackenzie River as a
definer of social boundaries and possible mode of exchange. If extended
into pre-contact times, the majority of sites with THC artifacts (Fig. 12)
could have been produced by hunter-gatherers who personally visited
outcrops: First Nations of the Mackenzie Mountains regularly moved
distances of 300 km in traditional seasonal rounds (Andrews et al.,
2012; Hanks, 1993). The majority of sites beyond a few hundred kilo-
meters from the source can be explained by a single exchange between
two neighbouring bands. The location of Tertiary Hills near the junction
of four traditional territories may explain its movement within them. In
times of need, Shuhtagot'ine Dene travelled beyond their traditional
territory to the northeast and if this practice is of antiquity, it would
explain the pre-contact presence of THC in this area. The Shuhtagot'ine
Dene often travelled over the Mackenzie Mountains into Yukon to ex-
change goods and fish for salmon (Gillespie, 1981; Hanks, 1993;
Michea, 1963) so the occurrence of THC (prior to White River Ash east
deposition) at archaeological sites along rivers that drain west from the
Mackenzie Mountains is not surprising.

With an average distance of 1070 km from the source, sites in
Alberta with THC are more difficult to explain and likely involved the
exchange of goods multiple times. All sites in Alberta with THC are
located on or between major rivers that flow north to join the
Mackenzie River (Fig. 16). It appears that rivers were routes of ex-
change in Subarctic pre-contact times with a corollary implication that
boat technology was a major means of maintaining social connections,
perhaps as early as the Late Pleistocene (Engelbrecht and Seyfert,

Fig. 14. WRAe isopach map of tephra depth (adapted from Lerbekmo, 2008). The white triangle is the THC outcrop.

Table 6
Comparison of pre- vs. post-WRAe assemblages with THC in Northwest Territories.

Chronology Pre-WRAe Post-WRAe Unknown age Total or average

Sites with THC 44 26 62 132 (total)
Frequency of THC in all sites with THC 10% 48.3% 48.1% 33.3% (average)
Frequency of THC in assemblages with THC (but excluding sites with < 10 artifacts) 5.2% 42.5% 16.9% 16.6% (average)
Number of sites with THC tools 17 1 12 30 (total)
% of total assemblage that is a tool 5.5% 0.2% 10.1% 6.5% (average)
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1994).
Despite long-term stability of THC use, the WRAe eruption de-

creased the movement of curated tools and increased domestic pro-
duction. We surmise that hunter-gatherers in the Yukon River Basin
were negatively affected by heavy ash and this severed a connection
with Mackenzie Basin hunter-gatherers that, in turn, reduced exchange
networks and shifted THC exploitation to greater local consumption.
High resolution temporal data from pre-contact weapons recovered
from ice patches in Yukon indicate a clear technological shift after the
WRAe from atlatl darts to bow and arrow technology (Hare et al., 2012)
with a potentially associated cultural disruption. Caribou DNA records
(Kuhn et al., 2010) indicate that the ash fall may have decimated

ungulate populations on which the residents of southwest Yukon relied.
The earliest bow and arrow record in Yukon ice patches is a bow made
of coastal maple (Hare et al., 2012) suggesting that the WRAe event
either stimulated exchange of a new technology in the Yukon River
Basin or triggered the influx of new people from the west.

The spread of the bow and arrow around 1200 years ago may have
influenced THC exchange in Northwest Territories and abroad to Yukon
and Alberta. The bow and arrow are thought to have increased dietary
breadth and reduced hunting band sizes (Angelbeck and Cameron,
2014; Bettinger, 2013; Churchill, 1993), and/or increased human
conflict (Maschner and Mason, 2013), with a resultant decrease in
hunting territories, although applications of these hypotheses have

Fig. 15. Distance drop-off chart comparison and maps of pre- vs. post-WRAe archaeological sites with THC. The x-axis consists of archaeological sites, each re-
presented by one bar. The white triangle in the maps above is the outcrop of THC.
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been to cultural landscapes and ecosystems different from the Sub-
arctic. However, large-scale hunting events, like communal caribou
drives, persisted in the north to historic times, implying that hunting
band sizes may not have been greatly influenced by the bow and arrow
(e.g., Friesen, 2013; Gordon, 1990). Ice patch records indicate an an-
tiquity of snare technologies for small game (Andrews et al., 2012),
which suggests that dietary breadth may not have been significantly
altered with bow and arrow use either.

The last 1200 years in Northwest Territories and Yukon (the Late
Prehistoric Period) are generally marked by the introduction of small
side-notched points (reduced in size compared to the earlier and pre-
sumed atlatl dart points), disappearance of microblades, and in Yukon,
an increase in organic and copper tools (Clark and Gotthardt, 1999;
Cooper, 2012; Gordon, 1996; Morrison, 1984). Land use patterns did
not change significantly. It can be argued that local THC exploitation
increased with adoption of the bow and arrow. However, other forms of
archaeological evidence have yet to reveal a significant impact of the
bow and arrow in Subarctic subsistence and social networks (Andrews
et al., 2012; Morrison, 1984; Workman, 1979). It remains plausible that
the WRAe event and bow and arrow spread across Subarctic Canada are
related and therefore archaeologically challenging to differentiate in
terms of human impact. Vegetation communities do not appear to have
changed significantly in Northwest Territories in the last 3000 years
(MacDonald, 1987; Slater, 1985; Szeicz et al., 1995), therefore shifting

climates and changing ecosystems (long term) are unlikely explanations
of the changes in pre- and post-WRAe networks of raw material ex-
change. Ice patch archaeology and palaeoenvironmental studies, when
combined with changes in THC distribution, point to the WRAe vol-
canic event as a disruptive force in the Subarctic social landscape.

Changes in THC distribution offer two contributions to theories of a
long debated origin and impetus of the migration of Athapaskan-
speaking people (ancestors of modern Dene First Nations) from the
Canadian Subarctic to the American Southwest and Great Basin (Derry,
1975; Gordon, 2012; Haskell, 1987; Ives, 2003, 2010, 2014; Matson
and Magne, 2007; Moodie et al., 1992; Seymour, 2012; Workman,
1979). Firstly, the identification of THC in Alberta and Yukon indicates
that the presumed ancestral Dene contact zone extended across thou-
sands of kilometers from the Circumpolar North to the Northern Plains
east of the Rocky Mountains. This connection persisted for perhaps
several thousand years before Athapaskan migration began in the Late
Holocene. Secondly, the WRAe eruption appears to have altered social
dynamics as revealed by a geographic reduction of THC exchange above
WRAe tephra. The volcanic event was a likely stimulus of culture
change and may be implicated as one factor that ultimately dislocated a
group of hunter-gatherers from their homeland, which initiated a much
larger-scale movement of people across the continent.

Archaeologists have long sought links between WRAe and
Athapaskan migration (Derry, 1975; Ives, 2003; Workman, 1979) or

Fig. 16. An overlay of Dene First Nations territories at the time of European contact on the distribution of archaeological sites with THC (red circles). THC may have
been limited to exchange between Dene ancestors if Dene territories at one time extended further south into Alberta in the Holocene than at the time of European
contact.
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downplayed the significance of this ecological event (Gordon, 2012).
Previous researchers have relied on oral history of volcanic events
(Moodie et al., 1992), models of hunter-gatherer population density
(Ives, 2003; Mullen, 2012; Workman, 1979), or have drawn on other
hunter-gatherer responses to eruptions (Gordon, 2012) to infer impacts
of WRAe on pre-contact people and then extrapolate the likelihood that
this event stimulated out-migration. The identification of THC and
provenance analyses offer some of the first reliable archaeological clues
that ancestral Dene people maintained connections of deep antiquity
from Yukon and Northwest Territories to the Northern Plains of Al-
berta, a valid path en route to the US Southwest and Great Basin re-
gions. Our pXRF results and WRAe analyses also offer some of the first
evidence beyond ice patch records that the volcanic event influenced
northern hunter-gatherers and their social networks.

Our results are consistent with other analyses of northern hunter-
gatherer responses to volcanic events (see Dumond, 2004; Fitzhugh,
2012; Jacoby et al., 1999; Pendea et al., 2016; VanderHoek and Nelson,
2007). Pre-contact people demonstrate a high resilience to ecologically
rebound, either by temporarily relying on kin or altering subsistence
strategies, but they existed in social landscapes where large-scale nat-
ural events tipped the balances or caused disturbances to cultural fab-
rics that some groups capitalized on to another's disadvantage (see
Begét et al., 2008; Grattan and Torrence, 2007; Torrence, 2016;
Williams, 2002; Ziedler, 2016). People of the Yukon and Mackenzie
River Basins created kin and non-kin based alliances (Ives, 1990) to
strengthen their socio-political hold on landscapes and buttress sub-
sistence strategies. A large-scale event like the WRAe would have
triggered alterations to social landscapes. Social processes are major
means of adapting to large-scale ecological disturbances: provenance
analyses when combined with the use of stratigraphic markers (pXRF
analysis of THC and changes in distribution before and after the WRAe)
provide a tool to evaluate social responses to large events.

8. Conclusion

We identify and characterise pyrometamorphic rocks using a suite
of macroscopic, microscopic, and archaeometric techniques including
XRD, thin section studies, and EPMA. We demonstrate that some clin-
kers produce geochemically distinct profiles of value for provenance
studies. On the basis of results from pXRF, clinker artifacts from sites
across Northwest Territories, Yukon, and Alberta can be confidently
sourced to outcrops in the Tertiary Hills west of Mackenzie River.
Results of these analyses (e.g., 1.25 million km2 of THC extent that
spans 10,000 years of human use) indicate that hunter-gatherer social
networks beginning in the Late Pleistocene/Early Holocene were teth-
ered to rivers and encompassed broader areas of Subarctic North
America than previously thought. The White River Ash east volcanic
eruption around 846–848 CE (Jensen et al., 2014) may have negatively
influenced local hunter-gatherers in the Yukon River Basin that in turn
severed modes of contact across the Mackenzie Mountains to the east
with hunter-gatherers of the Mackenzie River Basin. This indicates that
the volcanic event altered local hunter-gatherer social networks, and
perhaps provided initial stimulus for the dislocation of a Dene hunter-
gatherer group that culminated in a large-scale migration to the
American Southwest and Great Basin. The application of provenance
studies to pyrometamorphic rocks and the investigation of changing
spatial and temporal distributions of raw materials offer means to re-
construct human movement and culture contact in global studies.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.jasrep.2018.11.039.
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