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A B S T R A C T   

This study reconstructs fusion of skeletal elements and tooth emergence relative to tooth formation among 
prehistoric hunter-gatherers from Cis-Baikal, Siberia (ca. 8000 to 5200 BP). Tooth formation was recorded using 
standard protocols. Ages were estimated based on tooth formation stages within an individual. Tooth emergence 
was recorded as not emerged, emerged beyond the alveolus, or in occlusion. Skeletal epiphyses and apophyses 
were recorded as fused or unfused. Fisher’s exact tests were used to test heterogeneity in each developmental 
stage. Tooth emergence occurred in the order reported by earlier studies and ages-at-emergence were similar to 
those of reference standards. Skeletal epiphyses and apophyses also had low degrees of heterogeneity in each age 
group and fused in the predicted order. Fusion of the presacral vertebrae and upper limb was similar to reference 
standards, though maturation in the lower limb was delayed. Low heterogeneity may be attributed to the small 
sample sizes, though genetic conservation in tooth emergence may also be inferred from these results. In 
addition, skeletal maturation in the vertebral column confirms that some measurements of the neural canal may 
be used as appropriate measures of stress exposure in the early life environment. Low levels of heterogeneity in 
skeletal maturation suggests that these elements may be used to estimate age at death, though caution should be 
expressed when using the lower limb as fusion of these elements may have been delayed by stress events.   

1. Introduction 

The study of life history provides fundamental knowledge of the 
developmental underpinnings surrounding the biology and behavior of 
living primates (Harvey and Clutton-Brock, 1985). Living primates are 
distinguished from other mammals on the basis of larger brains and 
slower development, and within primates, anatomically modern 
humans are further distinguished by a continued emphasis on slow 
growth and relatively large brains (Walker et al., 2006; Robson et al., 
2006). Paleoanthropologists and bioarchaeologists work with human 
skeletal and dental remains and are unable to directly observe the as
sociation between life histories, behavior, and biology. However, skel
etal and tooth maturation are frequently used as proxies that describe 
the timing and variation of life history events. Factors such as age at 
tooth emergence and ordering of tooth emergence are frequently 

tethered to the life history of living, and by extension, extinct primates. 
At present, variation in the timing and ordering of events such as tooth 
emergence and elemental fusion is well documented among select 
contemporary human samples (Moorrees, 1957; McKern and Stewart, 
1957; Demerjian et al., 1973; Smith, 1991; Albert and Maples, 1995; 
Ubelaker, 1989; Albert and Greene, 1999; Liversidge and Molleson, 
2004; Cardoso, 2007, 2008a, 2008b; Sciulli, 2007; AlQhatani et al., 
2010; Cardoso and Ríos, 2011; Conceição and Cardoso, 2011; Oziegbe 
et al., 2013). Results suggest general correspondence between tooth 
formation, emergence, and elemental fusion, though tooth emergence 
and elemental fusion may be delayed in accordance with environmental 
stress. 

Stress is an external perturbation that disrupts physiological ho
meostasis (Goodman et al., 1988). This concept is derived from the 
Seylean model that conceptualizes stress under the guise of a general 
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adaptation syndrome (Seyle, 1936). The organism responds to external 
perturbations through a three-stage response: alarm, resistance, and 
exhaustion. Survival of stress events is associated with adaptive plas
ticity as growth disruptions produce a series of energetic trade-offs that 
help thwart mortality during physiological perturbation (Kuzawa, 2005; 
Kuzawa and Quinn, 2009). That said, future energetic investments in 
growth and survival are limited due to the physiological trade-offs 
required to survive early life stress events—energy is redirected to the 
growth and maintenance of essential tissue, while investment in long- 
term growth and survival is diminished (Worthman and Kuzara, 2005). 

Tooth development is the process by which teeth form and emerge 
(Smith, 1991). Tooth formation includes three stages associated with the 
production and mineralization of enamel: presecretory, secretory, and 
maturation (Nanci, 2008). First, ameloblast cells are differentiated from 
precursor cells in the inner enamel epithelium. Next, secretory amelo
blasts produce the organic component of enamel, mostly made up of 
proteins and enzymes. Finally, ameloblasts secrete ions responsible for 
the mineralization of enamel during the maturation stage. This process 
also occurs in the dentine via odontoblasts that are signaled during the 
termination of the presecretory stage of amelogenesis. Elevated “heri
tability” values for tooth formation combined with low coefficients of 
variation suggest minimal environmental influence over this process 
(Garn et al., 1960; Demerjian et al., 1973; Pelsmaekers et al., 1997; 
Merwin and Harris, 1998; Cardoso, 2007; Townsend et al., 2009). As 
such, tooth formation provides an important baseline indicator of 
chronological age in pre-adult human skeletal remains, particularly 
when assessing the relative maturation of dental and skeletal tissues 
during the first two decades of life. 

Relative maturation of the dentition is often measured using tooth 
eruption, though the term “eruption” remains imprecise as most studies 
observe the emergence of teeth through the gingiva (Smith, 1991a) or 
above the alveolus (Hillson, 1996). Recent reviews point towards vari
ation in tooth emergence among geographically diverse modern humans 
(Guatelli-Steinberg, 2009). However, several phases of tooth emergence 
are generally identified among modern humans: I: deciduous teeth (0.0 
to 2.0 years), II: first molar, first incisor, second incisor (6.0 to 8.0 years), 
III: canine, third premolar, fourth premolar, and second molar (10.0 to 
12.0 years), IV: third molar (age > 18.0 years) (Smith, 1991a). As noted 
by Smith (1991a), there remain several gaps in these events, specifically 
between 3.0 and 6.0 years, 8.0 and 10.0 years, and 12.0 and 18.0 years. 
These gaps may confound attempts at estimating age-at-death in human 
fossils or skeletal remains with precision if tooth emergence is the pri
mary method used to estimate age-at-death. Given the variation re
ported in tooth emergence it remains important to accurately report the 
relative phases of this process in association with tooth formation to gain 
a better perspective on global variation in these patterns and report on a 
more precise method to estimate age-at-death using tooth emergence 
within a population-specific context. 

Furthermore, studies of tooth emergence suggest that this process is 
influenced by systemic stressors and may provide evidence for the cost 
of physiological adjustment to varied environments. Differences in ages 
of tooth emergence between wild and captive chimpanzees are observed 
and may reflect variation in stress between the two samples (Zihlman 
et al., 2004; Smith et al., 2013). Significantly delayed tooth emergence 
in chimpanzees who died at younger ages suggests that stressors 
involved in this process may also be linked to mortality (Smith and 
Boesch, 2010). Coefficients of variation are significantly greater for 
tooth emergence compared to tooth formation in a sample of individuals 
from the Fels Longitudinal Growth Study suggesting that environmental 
stressors may have a greater influence on the emergence compared to 
formation of teeth (Lewis and Garn, 1960; Garn et al., 1973). Differences 
in tooth emergence are also reported in association with familial social 
status in South America: individuals from higher socioeconomic statuses 
experienced earlier emergence of deciduous teeth (Alvarez, 1995; 
Alvarez et al., 1988). These results suggest that the emergence of teeth, 
while genetically buffered, may record evidence for the energetic costs 

of maintaining physiological homeostasis. 
Skeletal maturation is measured using a variety of methods including 

epiphyseal and apophyseal union. Epiphyseal union occurs when pri
mary and secondary centers of ossification fuse following the cessation 
of cellular activity in a growth plate, while apophyseal fusion occurs at 
the site of tendinous insertions and include the iliac crest, femoral tro
chanters, and superior and inferior surfaces of each vertebral body 
(Scheuer and Black, 2000). Cartilaginous growth plates are found in 
reptiles and mammals (Hall, 2005). In mammals the growth plate is a 
highly organized structure and includes four activity zones: hypertro
phy, proliferation, calcification, and ossification. The growth plate 
separates the diaphyses and epiphyses of growing bones and it is in this 
region that modeling of new bone occurs—as mentioned, chondroblasts 
produce a cartilaginous template which is broken down by osteoclasts 
and reengineered through ossification by osteoblasts (Martin et al., 
2001). Following epiphyseal union, growth of the bone in question 
stops. Each bone has distinct centers of ossification and experiences 
epiphyseal fusion at predictable stages of life history (Scheuer and Black, 
2000; Baker et al., 2005). 

However, independence between formation of teeth and fusion of 
skeletal elements is noted (Cheverud, 1981). This difference is associ
ated with the relative impact of environmental factors on skeletal 
maturation, specifically fusion of epiphyseal or apophyseal join
ts—samples from lower socioeconomic statuses or environmentally 
impoverished regions experience delays in epiphyseal and apophyseal 
fusion (Frisancho et al., 1970a, 1970b; Albert and Greene, 1999; Mei
jerman et al., 2007; Cardoso, 2008a, 2008b). One study of skeletal 
maturation recently argued that these indicators may be more sensitive 
to the costs of systemic stress burdens than longitudinal growth (Con
ceição and Cardoso, 2011). Therefore, analysis of relative skeletal 
maturation also clarifies variation in the relative cost of maintaining 
physiological homeostasis within particular environments. 

Stress in relation to the life course has been explored among hunter- 
gatherers from the Cis-Baikal region. A comparatively high frequency of 
linear enamel hypoplasia has been documented among samples from 
this region, though these experiences were not related to early mortality 
(Lieverse et al., 2007). Evidence for growth disruption in body mass and 
femoral length have also been reported (Temple et al., 2014) and are 
consistent with indicators of body size variation in adults from this re
gion (Stock et al., 2010). The largest residuals for growth in body size 
were found at ages associated with the cessation of weaning (i.e., Wa
ters-Rist et al., 2011), suggesting that the transition to an adult diet may 
have instantiated physiological and psycho-social stress (Temple et al., 
2014). The Cis-Baikal population relied heavily on terrestrial and 
aquatic mammals as well as lacustrine fish, all of which were available in 
seasonal cycles (Scharlotta et al., 2016; Weber et al., 2016a; Weber and 
Bettinger, 2010). This dietary pattern may have increased risk of growth 
disruption during cycles of diminished returns. 

The goal of this study is to document variation in ages of skeletal and 
dental maturation, evidence for growth disruption in this process, and 
interpret patterns of variation within an environmental and develop
mental context. 

2. Materials 

The skeletal growth samples utilized by this study are drawn from 
two distinct phases of occupation in the Cis-Baikal region. The first 
phase is associated with the Early Neolithic Kitoi culture. Early Neolithic 
(EN) Kitoi cultures date between 7560 and 6600 BP (Weber et al., 2020). 
EN Kitoi cemeteries are geographically concentrated along the south
western tributary of the Angara River and Southwest Baikal micro- 
region. Kitoi populations were biological descendants of ancient Meso
lithic, or possibly, Paleolithic inhabitants of the Baikal region and have 
elevated frequencies of haplogroups D, F, and U5a (Mooder et al., 2010). 
These haplogroups help distinguish the Kitoi from the Late Neolithic / 
Early Bronze Age samples (see below) as well as modern Indigenous 
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inhabitants of the region. The sublineage of haplogroup F found in the 
Kitoi populations are also observed at high levels in modern Kets indi
cating the possibility of close affinity between these two groups (Schurr 
et al., 2010). The use of nuclear DNA analysis will help further resolve 
these questions. The EN sample was recovered from two sites, Loko
motiv and Shamanka II, located along the banks of the Angara River in 
the city of Irkutsk and the southern tip of Lake Baikal respectively 
(Fig. 1). Radiocarbon dating of human skeletal remains from these sites 
has been completed for 59 skeletons from the Lokomotiv site and 36 
skeletons from the Shamanka II site (Weber et al., 2010, Weber et al., 
2016a, 2016b). These cemeteries date between 7470 and 6750 BP 
(Weber et al., 2016a, 2016b). Sample sizes for the Lokomitv and 

Shamanka II sites are listed in Table 1. 
Late Neolithic (LN) mortuary traditions in the Cis-Baikal region are 

known as Isakovo, while those dated to the Early Bronze Age are asso
ciated with Glazkovo culture. Isakovo dates between 6060 and 4410 BP 
in the Southern Baikal and Angara River geographic regions, while 
Glazkovo dates between 4970 and 3470 BP (Weber et al., 2020). Genetic 
discontinuity has been found between the EN Kitoi and LN Isakovo 
samples, with the LN sample having a different sublineage of haplogroup 
F than the EN groups, and possessing the U5a haplogroup suggesting 
close relationships with Uralic and indigenous people from the Altai 
region (Schurr et al., 2010). Of further importance is the noted lack of 
haplogroups H–K, T, V, and X indicating little relatedness to the 

Fig. 1. Map indicating the location of sites included in this study.  
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Western Eurasian populations associated with the EN Kitoi people. The 
LN sample was recovered from one cemetery, Ust’-Ida I, located along 
the Angara River approximately 100 km north of Irkutsk (Fig. 1). 
Radiocarbon dates have been obtained for 64 individuals from the Ust’- 
Ida I site (Weber et al., 2010; Weber et al., 2016a, 2016b). The samples 
from Ust’-Ida I that are included in this study are associated with the 
Isakovo culture. One pre-adult grave at the site is identified as Kitoi and 
five other pre-adults date to a Glazkovo cultural occupation. These six 
individuals were removed from the analysis. The Isakovo component of 
the Ust’-Ida I site dates between 5420 and 5180 BP (Weber et al., 2016a, 
2016b). Sample sizes for the Isakovo occupation of Ust’-Ida I included in 
this work are listed in Table 1. 

3. Methods 

Age-at-death was estimated using tooth formation due to the limited 
impact of environment on this process and repeated independent 
confirmation of accuracy between studies (Smith, 1991; AlQhatani 
et al., 2010). The sample sizes for individuals with observable tooth 
formation stages are listed in Table 1 by site. Mandibles and maxillae 
were radiographed using the NOMAD Pro Hand-Held X-ray System 
(Aribex, Provo, Utah) and Dr. Suni Plus Intraoral Digital Light Sensor 
(SUNI Medical Imaging Inc., San Jose, California). Formation stages of 
teeth were recorded using standard qualitative methods derived for 
deciduous and permanent teeth (Liversidge and Molleson, 2004; AlQ
hatani et al., 2010). Formation stages were compared to standards that 
provide estimates of age for the deciduous (Liversidge and Molleson, 
2004) and permanent (AlQhatani et al., 2010) dentition. A minimum of 
one tooth was observed in each individual. Where multiple teeth were 
observed, the average age estimated from all available teeth was uti
lized. Utilizing these averages as an estimate of chronological age is 
acceptable as the correlation coefficient (r = 0.801) and slope (b =

0.9048) indicate a relatively high degree of intraobserver agreement for 
age estimations derived from the formation stages of multiple teeth from 
the same individual (Fig. 2). Furthermore, because there is some vari
ability in the formation stages of different teeth relative to age, utilizing 
the average of these estimates provides a more accurate estimation of 
age (Smith, 1991a). 

Phases of tooth emergence were recorded using standard protocols 
(Hillson, 1996). Where the occlusal most point of a tooth crown had not 
emerged beyond the alveolus, the tooth was recorded as NE—not 
emerged. Once the most occlusal point of a tooth crown was observed 
beyond the alveolus, the tooth was recorded as AE—alveolar emergence. 
Finally, teeth emerged into occlusion were recorded as EO—emerged 
into occlusion. These stages were compared to age-at-death estimates 
that were established on the basis of tooth formation. 

Epiphyseal and apophyseal fusion were recorded according to two 
stages: fused (i.e., ossified, though fusion lines may remain) or unfused. 
It should be noted that multiple phases of fusion are possible to record in 
immature skeletal remains (Buikstra and Ubelaker, 1994). However, 
previous studies avoided dividing the level of fusion in skeletal growth 
samples into these smaller categories because of problems in element 
preservation as well as standardizing the presence and absence of fusion 
lines in the absence of radiographic analysis (Sciulli, 2007). Because the 
number of individuals with evidence for fusion was small, these samples 
were divided into maturity phases based on ages estimated using tooth 
formation stages. Nine maturity phases were utilized for these samples. 
Maturity phases include GP1 (0.1–0.9 years), GP2 (1.0–1.9 years), GP3 
(2.0–3.9 years), GP4 (4.0–5.9 years), GP5 (6.0–7.9 years), GP6 (8.0–9.9 
years), GP7 (10.0–12.9 years), GP8 (13.0–16.9 years), and GP9 
(17.0–22.0 years). 

Fisher’s exact tests were used to compare the relative number of 
individuals with fused and unfused elements as well as emerged and 
non-emerged teeth between age ranges. This method tests the null hy
pothesis that no differences in the relative number of individuals with 
fused and unfused elements or emerged and non-emerged teeth will be 
found between successive age groups. Elevated degrees of heterogeneity 
will result in no significant differences between samples. Heterogeneity 
is defined by relative equivalency in the proportions of fused and un
fused or emerged and un-emerged specimens in an age group or matu
rity phase. 

4. Results 

4.1. Dental maturity 

Tooth emergence patterns are listed in Fig. 3. Light gray bars indicate 
ages where a mixture of teeth are emerged into occlusion, emerged 
beyond the alveolus, and not emerged. Dark gray bars are associated 
with ages where the tooth in question has emerged into occlusion for 
100% individuals within the cohort. The order of full mandibular tooth 
emergence among the Cis-Baikal hunter-gatherers is as follows: di1/di2, 
dc, dm1, dm2, M1, I1, I2, C, PM3, PM4, M2, M3. Little heterogeneity in 
the relationship between tooth emergence and ages based on tooth 
formation were found. For all individuals, the first and second deciduous 
incisors erupted into occlusion during the first year of life. For two tooth 
types (dc and dm2), full eruption in all individuals occurred within 1.0 
year of the first individual having one of these tooth crowns emerged 
beyond the alveolus. For five tooth types (dm1, I2, C, PM3, PM4, and 
M1), full emergence in all individuals occurred within 2.0 years of the 
first individual having one of these tooth crowns emerged beyond the 
alveolus. For two tooth types (I1 and M2), full emergence occurred 
within 3.0 years of the first individual having one of these tooth crowns 
emerged beyond the alveolus. There are approximately three years be
tween the full emergence of the deciduous dentition and that of the first 
permanent molar (M1), approximately two years between the full 
emergence of the anterior and posterior permanent dentition, and 
approximately four years between the emergence of the posterior 

Table 1 
Sample sizes for each observation by site.   

Ust Ida I Shamanka II Lokomotiv Total 

Late Neolithic Early Neolithic Early Neolithic 

Isakovo Kitoi Kitoi 

Tooth Formation 27 19 13 59 
Tooth Emergence 23 18 9 50 
Mandible 26 15 14 59 
Proximal Humerus 25 19 13 57 
Humeral Trochlea 25 18 10 53 
Medial Humerus 26 19 9 54 
Radial Head 21 17 8 46 
Distal Radius 21 16 8 45 
Proximal Ulna 20 17 9 46 
Distal Ulna 21 17 7 45 
Femoral Head 27 19 9 55 
Greater Trochanter 26 19 9 54 
Distal Femur 26 19 9 54 
Proximal Tibia 27 19 8 54 
Distal Tibia 27 19 8 54 
C1 anterior arch 5 12 4 21 
C1 posterior arch 17 12 4 33 
C2 cea-nab 13 11 5 29 
C2 na-na 18 10 5 33 
C3-C7 ce-na 19 18 5 43 
C3-C7 na-na 21 18 5 42 
C3-C7 ringsc 19 17 5 41 
T1-T12 ce-na 21 17 4 42 
T1-T12 na-na 21 18 4 43 
T1-T12 rings 20 16 4 40 
L1-L5 ce-na 21 16 3 40 
L1-L5 na-na 19 18 3 32 
L1-L5 rings 19 17 3 37  

a Vertebral centrum. 
b neural arches. 
c apophyseal rings. 
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dentition, particularly M2, and the third molar. 

4.2. Skeletal maturity 

Table 2 lists the proportion of individuals with fused and unfused 
skeletal elements in each age group. Dark gray outlines are used to 
indicate where statistically significant (P ≤ 0.05) differences between 
the proportion of individuals with fused relative to unfused elements are 
found. In many cases, the process of fusion begins at an earlier stage in 
ontogeny than the point where statistical significance was attained. The 
point where fusion begins is outlined in light gray. This is likely due to 
smaller sample sizes in some age groups. These light gray outlines are 
used to alert the reader to the onset of fusion for the element in question. 

The mandibular symphysis fused at the earliest point in ontogeny (GP1), 
followed by the vertebral elements. Within the vertebral elements, 
neural arch fusion occurred earliest for each vertebral section, though 
statistical significance was not reached due to attenuated sample sizes. 
Neural arch fusion was followed by neurocentral fusion in each vertebral 
section, and finally, the apophyseal (annular) rings of each vertebral 
element. In terms of the appendages, the medial epicondyle of the hu
merus and proximal ulna (GP 8) fused first and were followed by all 
other epiphyseal elements in the latest age group (GP9). 

Fig. 2. Reduced major axis regression analysis of age estimates using tooth formation standards in individuals with two teeth.  

Fig. 3. Patterns of tooth emergence in the Cis-Baikal samples. Light gray bars indicate ages where a mixture of teeth are emerged into occlusion, emerged beyond the 
alveolus, and not emerged. Dark gray bars are associated with ages where the tooth in question has emerged into occlusion for 100% individuals within the cohort. 
The number above each bar indicates the ordering of tooth emergence for each tooth type. 
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5. Discussion 

5.1. Dental maturity 

Residuals associated with the two ages estimated from tooth for
mation increase over the lifespan, and especially after four years of age 
(Fig. 2). Collations of tooth formation stages for first, second, and third 
molars document a successive, nearly three-fold increase in standard 
deviation for age-at-attainment in later forming teeth (Hillson, 2014). 
Similar results were observed at the Shamanka II cemetery (Scharlotta 
et al., 2018). Initiation stages ages for the second and third molar were 
delayed relative to the first suggesting greater variation in the formation 
patterns of later forming teeth. These results are consistent with obser
vations by this study that suggest increasing differences in dental age 
estimated from multiple teeth at later ages of development. However, it 
remains important to note that standard deviations between dental age 
and chronological age reduce markedly when averages from multiple 
teeth are used (Smith, 1991) suggesting that there exists a strong cor
respondence between dental age and chronological age (Garn et al., 
1960). 

The order of tooth emergence (Fig. 3) is consistent with previously 
reported studies (Ubelaker, 1989; Smith, 1991; Hillson, 1996; Sciulli, 
2007). In addition, little time elapsed between age groups where some 
individuals expressed alveolar emergence of a particular tooth and all 
individuals having this tooth emerged into full occlusion. This suggests 
relatively low heterogeneity in tooth emergence among hunter- 
gatherers from Cis-Baikal. The samples sizes used by this study are 
small in comparison to those reported by previous analysis of tooth 
emergence (Smith, 1991; Sciulli, 2007). Smaller samples produce lower 
heterogeneity by virtue of the fact that it is much easier to move from a 
context of mixed emergence (those with both emerged and un-emerged 
teeth) to 100% emergence (Smith, 1991). As a result, some degree of 
caution in interpreting these findings is necessary, though consistency 
between these results and those reported by other studies suggest 

genetic constraint in ages and sequencing of tooth emergence. 
Elevated heritability for ages at tooth emergence is reported (Garn 

et al., 1960, 1965, 1973; Townsend et al., 2009). Elevated heritability 
for tooth emergence reflects highly conserved, coordinated patterns of 
gene expression. Tooth emergence begins when a series of mechanical 
forces move the tooth along the emergence pathway (Nanci, 2008; 
Marks and Schroeder, 1996; Wise, 2009; Proffit and Frazier-Bowers, 
2009). Experimental studies suggest that cellular proliferation and 
vasodilation at the root apex may be responsible for these forces during 
the initial stages of tooth emergence, while pressure within the peri
odontal ligament at the post-emergent stages may be implicated (Proffit 
and Frazier-Bowers, 2009). During this process, the basal and coronal 
portions of the dental follicle control the expression of gene families that 
respectively stimulate osteoclastogenesis and bone formation along the 
emergence pathway (Marks and Cahill, 1987). The gene families within 
the dental follicle are expressed at different times, with the gene families 
that are initially expressed governing bone (and root of un-emerged 
deciduous tooth) resorption (CSF-1, EMAP-II, MCP-1, SFRP-1*), and 
the gene families that are secondarily expressed governing the formation 
of bone around a tooth root within the alveolar crypt (OPG, RANKL, 
VEGF, TNF-α)(Marks et al., 1983; Wise and Fan, 1989; Cielinski et al., 
1994; Liu and Wise, 2007; Wise and Shaomian, 2003; Yao et al., 2006). 
The interdental septum separates each tooth crypt, allowing the process 
to occur independently in each tooth (Nanci, 2008). 

These findings do not downplay the importance of environmental 
influences on tooth emergence. In fact, recent work emphasizes that 
tooth emergence may be delayed in response to environmental chal
lenges to physiological homeostasis (Zihlman et al., 2004; Cardoso, 
2007; Smith and Boesch, 2010; Conceição and Cardoso, 2011; Oziegbe 
et al., 2013; Smith et al., 2013), though these delays are significantly 
reduced when compared with skeletal maturation (Cardoso, 2007; 
Conceição and Cardoso, 2011). Tooth formation from the Cis-Baikal 
region do in fact suggest delayed initiation in dentin formation for the 
second and third molar (Scharlotta et al., 2018). This difference is not 

Table 2 
Percentages of individuals in each age group where fusion could be observed. Light gray shading is used to indicate the onset of fusion, while dark gray shading is used 
to indicate that a statistically significantly greater proportion of individuals has experienced fusion than in previous age groups. Sample sizes are listed in parentheses 
within each cell.   

GP 1 GP 2 GP 3 GP 4 GP 5 GP 6 GP 7 GP 8 GP 9 

Age (Years) 0.0–0.9 1.0–1.9 2.0–3.9 4.0–5.9 6.0–7.9 8.0–9.9 10.0–12.9 13.0–16.9 17.0–22.0 
Mandibular Symphysis 100.0 (1) 100.0 (6) 100.0 (11) 100.0 (6) 100.0 (11) 100.0 (8) 100.0 (8) 100.00 (4) 100.0 (4) 
Proximal Humerus 0.0 (1) 0.0 (5) 0.0 (8) 0.0 (3) 0.0 (12) 0.0 (7) 0.0 (8) 0.0 (4) 100.0 (9) 
Humeral Trochlea 0.0 (1) 0.0 (5) 0.0 (8) 0.0 (3) 0.0 (11) 0.0 (6) 0.0 (6) 25.0 (4) 100.0 (9) 
Humeral Medial 0.0 (1) 0.0 (4) 0.0 (7) 0.0 (3) 0.0 (8) 0.0 (6) 0.0 (6) 50.0 (3) 100.0 (10) 
Radial Head 0.0 (1) 0.0 (4) 0.0 (7) 0.0 (3) 0.0 (8) 0.0 (6) 0.0 (6) 0.0 (3) 100.0 (8) 
Distal Radius 0.0 (1) 0.0 (3) 0.0 (7) 0.0 (3) 0.0 (8) 0.0 (6) 0.0 (6) 0.0 (3) 100.0 (8) 
Proximal Ulna 0.0 (1) 0.0 (4) 0.0 (8) 0.0 (3) 0.0 (7) 0.0 (5) 16.7 (5) 66.7 (3) 100.0 (10) 
Distal Ulna 0.0 (1) 0.0 (4) 0.0 (8) 0.0 (3) 0.0 (7) 0.0 (5) 0.0 (5) 0.0 (3) 87.5 (9) 
Femoral Head – 0.0 (5) 0.0 (9) 0.0 (3) 0.0 (10) 0.0 (7) 0.0 (8) 0.0 (3) 100.0 (10) 
Femoral Trochanter – 0.0 (5) 0.0 (9) 0.0 (3) 0.0 (10) 0.0 (7) 0.0 (8) 0.0 (3) 100.0 (9) 
Distal Femur – 0.0 (5) 0.0 (9) 0.0 (3) 0.0 (10) 0.0 (7) 0.0 (8) 0.0 (3) 77.7 (9) 
Proximal Tibia 0.0 (1) 0.0 (6) 0.0 (7) 0.0 (3) 0.0 (9) 0.0 (7) 0.0 (8) 0.0 (3) 88.8 (10) 
Distal Tibia 0.0 (1) 0.0 (6) 0.0 (8) 0.0 (3) 0.0 (9) 0.0 (7) 0.0 (8) 0.0 (3) 100.0 (9) 
Cervical 1 anterior arch – 0.0 (3) 0.0 (2) – 100.0 (2) 100.0 (2) 100.0 (2) 100.0 (4) 100.0 (6) 
Cervical 1 posterior arch – 80.0 (2) 100.0 (5) 100.0 (1) 100.0 (5) 100.0 (3) 100.0 (7) 100.0 (4) 100.0 (6) 
Cervical 2 cea-nab – 0.0 (2) 0.0 (2) 0.0 (5) 100.0 (5) 100.0 (4) 100.0 (6) 100.0 (4) 100.0 (6) 
Cervical 2 na-na – 0.0 (2) 100.0 (2) 100.0 (1) 100.0 (7) 100.0 (4) 100.0 (6) 100.0 (4) 100.0 (7) 
Cervical 3–7 ce-na 0.0 (1) 0.0 (5) 0.0 (6) 66.7 (3) 100.0 (6) 100.0 (5) 100.0 (6) 100.0 (4) 100.0 (7) 
Cervical 3–7 na-na 0.0 (1) 71.4 (7) 100.0 (6) 100.0 (3) 100.0 (6) 100.0 (5) 100.0 (6) 100.0 (4) 100.0 (6) 
Cervical 3–7 ringsc 0.0 (1) 0.0 (4) 0.0 (6) 0.0 (2) 0.0 (6) 0.0 (5) 0.0 (6) 0.0 (4) 100.0 (7) 
Thoracic 1–12 ce-na 0.0 (1) 0.0 (4) 0.0 (6) 50.0 (2) 100.0 (6) 100.0 (5) 100.0 (6) 100.0 (4) 100.0 (8) 
Thoracic 1-T12 na-na 0.0 (1) 40.0 (5) 83.3 (6) 100.0 (2) 100.0 (6) 100.0 (5) 100.0 (6) 100.0 (4) 100.0 (8) 
Thoracic 1–12 rings 0.0 (1) 0.0 (3) 0.0 (6) 0.0 (2) 0.0 (6) 0.0 (5) 20.0 (5) 100.0 (4) 100.0 (8) 
Lumbar 1–5 ce-na 0.0 (1) 0.0 (4) 0.0 (5) 50.0 (2) 100.0 (6) 100.0 (5) 100.0 (6) 100.0 (3) 100.0 (8) 
Lumbar 1–5 na-na 0.0 (1) 40.0 (5) 66.7 (6) 66.7 (6) 100.0 (2) 100.0 (6) 100.0 (5) 100.0 (3) 100.0 (8) 
Lumbar 1–5 rings 0.0 (1) 0.0 (3) 0.0 (5) 0.0 (2) 0.0 (5) 0.0 (5) 0.0 (5) 0.0 (3) 100.0 (8)  

a Vertebral centrum. 
b neural arches. 
c apophyseal rings. 
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attributed to variation in stress, but instead, genetic variation in the 
timing of tooth formation and subsequent emergence in this population. 
Given these observations, it remains unlikely that tooth emergence 
among the Cis-Baikal hunter-gatherers was offset by systemic stress to 
an appreciable degree. The observed patterns of tooth emergence in 
these samples are instead associated with the interactions of regulatory 
genes and the timing of cellular differentiation and tooth formation. 

Sequences of tooth emergence reported here have “lag times” of 
several years between different sets of teeth: three years between the full 
emergence of the deciduous dentition and first permanent molar, two 
years between the emergence of the anterior and posterior permanent 
dentition, and four years between the full emergence of the second and 
third molars. This finding is consistent with previous studies reporting 
similar “lag times” between the emergence of these tooth categories 
(Smith, 1991). The results suggest that estimating age-at-death in 
human skeletal remains using only tooth emergence provides wide 
ranges that may not offer the type of precision required for studies of 
growth and development. Gaps in the emergence of tooth groups may 
produce difficulty in estimating ages between 2.0 and 5.5 years, 7.0 and 
10.0 years, and 12.0 and 15.5 years. As a result, age-at-death profiles 
recorded for immature skeletal samples should rely on a combination of 
tooth emergence and formation. Tooth formation provides a substan
tially more precise method by which to estimate age-at-death in 
immature remains because the process is continuous, rather than in
cremental (Smith, 1991; Hillson, 1996), and as suggested by the results 
of this and other studies (Smith, 1991; Sciulli, 2007; Cardoso, 2007), 
there is a high degree of agreement when ages are estimated using 
multiple teeth from the same individual. 

5.2. Skeletal maturity 

Fusion of primary and secondary centers of ossification is age- 
dependent and a useful indicator of age-at-death in human skeletal re
mains. In human populations caution is exercised in estimating age-at- 
death using this method because fusion is sometimes delayed due to 
nutritional stress. The results of this study suggest a fairly uniform dis
tribution of fusion within the samples from Cis-Baikal. Where statistical 
significance was not found in the first group to express fusion, many still 
had greater than 65% of all individuals with fused elements. Two ex
ceptions to this pattern are the neural arches of cervical and thoracic 
vertebrae. Therefore, some caution should be exercised when utilizing 
these two vertebral segments in estimating age-at-death among skeletal 
samples from Cis-Baikal. 

In terms of skeletal maturity, the earliest observed element to fuse 
was the mandibular symphysis. This result was unsurprising as previous 
studies note that this element fuses during the first year of life (Scheuer 
and Black, 2000; Schaefer et al., 2009) and is found to be fused on 100% 
of all cases at the earliest stage of ontogeny in prehistoric skeletal 
samples (Sciulli, 2007). Fusion of the vertebral elements follow the most 
consistent pattern of fusion for children and juveniles. The posterior 
neural arches of the first cervical vertebra fuse in GP4, while anterior 
arch fusion occurs in GP5. In the general cervical vertebrae category, 
neural arch fusion begins in GP4, while neurocentral fusion occurs in 
GP5. For the thoracic and lumbar vertebrae, neural arch fusion begins in 
GP4, and neurocentral fusion in GP5. Appendicular epiphyses and 
vertebral apophyseal (annular) rings are the last elements to fuse. The 
cervical and lumbar vertebrae experience apophyseal union in GP9, 
while the thoracic elements experience fusion in GP8. This result may be 
useful in narrowing age estimates among middle and older adolescents, 
as GP8 corresponds with an age range of 13.0 to 16.9 years, while GP9 
corresponds with an age range of 17.0 to 22.0 years. 

Fusion of the vertebral neural arch and centrum are mostly consis
tent with expectations that suggest dimensions of the neural canal are 
associated with early life experiences (Clark et al., 1986; Clark, 1988; 
Watts, 2011, 2013, 2015; Newman and Gowland, 2015). Of particular 
interest is the finding that the neural arch fuses to the vertebral body 

around 4.0 years of age and that transverse diameter remains consistent 
from this point to adulthood (Watts, 2013). Similarly, fusion of the 
neural arch begins around 1.0–2.0 years for the cervical vertebrae, and 
2.0–4.0 years of age for the thoracic and lumbar vertebrae, suggesting 
that anterior-posterior diameter of the neural canal may reflect growth 
at the very earliest stages of ontogeny. Recent studies, however, 
demonstrate continued growth between these landmarks until approx
imately 15–17 years of age (Watts, 2013). These results are consistent 
with the argument that vertebral neural canal diameters are formed in 
the early life environment and that these measurements should be used 
as a barometer for early life stress. In particular, these results confirm 
that the anterior-posterior diameter tracks growth in infancy, while the 
transverse diameter tracks growth between late infancy and early 
childhood. Some caution should be exercised in evaluating anterior- 
posterior diameters as this dimension continues expansion following 
fusion. Measurements of vertebral neural canal have not been collected 
in the Cis-Baikal samples and represent a new way that early life stress 
may be explored in high resolution chronological context among these 
samples. 

Results regarding ages for fusion of the annular rings differ slightly 
from previous studies. Annular rings of the cervical and lumbar verte
brae begin fusion after 17.0 years of age in the Cis-Baikal sample. 
Annular ring fusion of cervical and lumbar vertebral bodies occurs be
tween 14 and 21 years of age for males and females in an early 20th 
century sample from Portugal (Cardoso and Ríos, 2011). This difference 
may be associated with underlying differences in skeletal maturation 
between the two populations, or it may reflect sampling protocols and 
age estimation methods. The sample from Portugal is part of a collection 
where chronological age is known, whereas age at death was estimated 
using stages of tooth formation in the Cis-Baikal sample. In addition, the 
sample from Portugal has a substantially larger number of individuals (n 
= 104) between 9.0 and 30.0 years of age. As a result, it is possible that 
the earliest stages of fusion for the annular rings are not represented in 
the Cis-Baikal sample, and that the process is skewed towards older ages. 
Results from Cis-Baikal, however, are consistent with those reported by 
Buikstra et al. (1984): annular ring fusion of cervical vertebral bodies in 
a sample of early 20th century black and white Americans begins be
tween 17 and 25 years of age. Fusion of thoracic annular rings begins 
around 14.0 years in the sample from Portugal (Cardoso and Ríos, 
2011), and this follows observations from Cis-Baikal, where the earliest 
fusion occurs between 10.0 and 12.9 years of age. These results differ 
from previous studies of white and black Americans where annular ring 
fusion of thoracic vertebrae begins at older ages (17–18 years) (McKern 
and Stewart, 1957; Albert and Maples, 1995). 

In terms of epiphyseal union, the medial humeral epicondyle and 
proximal ulna (olecranon) may be used to identify early and middle 
stage adolescents as a significant proportion of individuals in GP8 (13.0 
to 16.9 years) experience fusion of these elements. Among the other 
epiphyses, all other structures fuse at 100% prevalence in GP9 (17.0 to 
22.0 years). Results for epiphyseal fusion are consistent with previous 
bioarchaeological studies that found the medial humeral epicondyle and 
proximal ulna were among the first epiphyseal segments to fuse and may 
help differentiate between early and middle stages of adolescence 
(Sciulli, 2007; Cardoso, 2008b). 

There exists a slight delay in the earliest stages of fusion in lower 
limb bones between this study and those previously reported. Femoral 
and tibial epiphyses and apophyses do not begin fusion until GP9 
(17.0–22 years) in the Cis-Baikal sample. By contrast, fusion of femoral 
and tibial epiphyses and apophyses begin between 14 and 15 years of 
age in samples from early 20th century Portugal (Cardoso, 2008a). 
Previous studies report delays between 0.5 and 2.0 years when skeletal 
maturation is compared between individuals from lower and higher 
socioeconomic status, though these delays are less pronounced when 
compared to skeletal growth, and are most apparent prior to adolescence 
(Dreizen et al., 1967; Frisancho et al., 1970a, 1970b). Epiphyses and 
apophyses associated with the lower limb begin ossification prior to 
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adolescence (Scheuer and Black, 2000). As such, it is possible that stress 
during this time period disrupted ossification of these elements and 
resulted in delayed fusion. However, it is also important to point out that 
because these earlier studies (i.e., Sciulli, 2007; Cardoso, 2008a) had 
larger sample sizes, the fusion of epiphyses were subdivided by fusion 
stage rather than consolidated into the single stage used in this study, 
specifically with regard to the epiphyses of the proximal femur and tibia. 
However, the percentages of individuals with fused proximal femora 
and tibiae in this intermediate category remain small (fused <20%) 
compared to those in the final stage of development. It, therefore, is less 
likely that these delays are associated with methods for recording stages 
of ossification. 

One final point to consider is that the Cis-Baikal sample includes 
individuals of unknown sex. Differences in skeletal maturation are near 
universally noted with earlier fusion ages reported for females compared 
to males (e.g., Albert and Maples, 1995; Buikstra and Ubelaker, 1994; 
Cardoso, 2008a, 2008b; Scheuer and Black, 2000). Combining the 
samples from Cis-Baikal, therefore, creates an unknown source of error 
as it is not possible to be certain that the 2–3 years delay in lower limb 
fusion results from male bias. That said, systemic stress must also be 
considered as a potential causative agent for the pattern of delayed 
skeletal maturity observed in the lower limb. 

Studies comparing chronological age to ages estimated using tooth 
formation, long bone growth, and epiphyseal fusion consistently found 
evidence for delayed skeletal growth and maturation in groups with 
lower socioeconomic status, and the differences were significantly 
greater in skeletal compared to dental elements (Cardoso, 2007; Con
ceição and Cardoso, 2011). Skeletal and dental indicators of growth 
disruption show no relationship to mortality in the samples from Cis- 
Baikal (Lieverse et al., 2007; Temple et al., 2014). However, disrup
tions to skeletal growth were found in these samples and concentrated in 
the lower limb (Temple et al., 2014). cis-Baikal hunter-gatherers 
participated in a hunting economy where resources such as terrestrial 
and aquatic mammals as well as lacustrine fish were exploited (Kat
zenberg et al., 2010; Weber et al., 2016a, 2016b). Exploitation of these 
resources followed seasonal cycles, and disruptions to these cycles in 
association with climatic perturbation was likely (Weber and Bettinger, 
2010). Differences in adaptive strategies characterize the Early and Late 
Neolithic samples included in this study: greater homogeneity in dietary 
patterns combined with cultural heterogeneity is found during later 
phases of the Early Neolithic (Scharlotta et al., 2016; Weber and Bet
tinger, 2010). Greater heterogeneity in dietary strategy and homoge
neity in cultural expression is found in Late Neolithic samples (Weber 
and Bettinger, 2010). While increasing dietary homogeneity in the Early 
Neolithic sample likely increased precarity to environmental stressors, 
seasonality may have introduced stress in both samples and resulted in 
disruption of elemental fusion in the lower limb. 

It remains important to point out that the preadult samples in this 
study represent a non-surviving cohort. It is possible that elemental 
fusion was delayed in this non-surviving sample, and that individuals 
who lived beyond 22.0 years experienced elemental fusion at an earlier 
age. It is, therefore, more prudent to conclude that seasonal stress ap
pears to have slightly delayed fusion of some skeletal elements among 
individuals who did not survive past early adulthood, though the gen
eral trend still supports a pattern of relative homogeneity in elemental 
fusion in this non-surviving cohort of the population. 

6. Conclusions 

This study compared the relative dental and skeletal rates of matu
ration to ages estimated using developmental phases of teeth. The study 
found little heterogeneity between ages of tooth formation and emer
gence. This result is potentially rooted in small sample sizes. Findings 
also point towards a highly conserved process that is rooted in control 
over gene expression by the dental follicle. This finding does not argue 
against environmental influence on tooth emergence. Instead, it 

suggests that variation in tooth emergence was limited among the Cis- 
Baikal hunter-gatherers and likely not driven by the need to maintain 
homeostasis during physiological disruption. Relatively low degrees of 
heterogeneity in the fusion of skeletal elements were found, and the 
ordering of fusion follows previously reported studies. Fusion of verte
bral elements are consistent with previously reported data sets and 
suggest that measurements of the vertebral neural canal capture growth 
and maturation in the early life environment. Ages for fusion in the 
upper limb match earlier work and suggest that maturation in these 
elements may be used to estimate age at death. Slight delays in fusion of 
the lower limb are found. While it is not possible to rule out sex bias or 
sample size as contributing factors, it is also likely that stress experiences 
may have contributed to this pattern of delayed maturation in this non- 
surviving cohort. 
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